Conquering the Realm of Logic: A Quick Guide to Logical Operators in R

Introduction

- Logical operators are the gatekeepers of truth in R, allowing you to combine conditions and build complex decisionmaking structures.
- Mastering them unlocks the power of conditional statements, loops, and data manipulation tasks.
- This guide will equip you with the knowledge and practice to handle these mighty tools with confidence.

The Binary Universe of TRUE and FALSE

- Before diving into operators, remember R's fundamental truth values: TRUE and FALSE.
- These form the bedrock of any logical expression.
- Statements like $5>3$ evaluate to TRUE, while $2+2=5$ gives a resounding FALSE

The Big Three: AND, OR, and NOT:

These are the workhorses of R logic:

- AND (\&): Returns TRUE only if both conditions are TRUE. (TRUE \& TRUE = TRUE).
- OR (|): More lenient than AND, OR returns TRUE if at least one condition is TRUE. (TRUE | FALSE = TRUE).
- NOT (!): The rebel of the group, NOT flips the truth value. !TRUE becomes FALSE, and vice versa. It's like a double negative in logic, turning a statement inside out.

Putting them to Work: Examples and Practice

Let's see these operators in action

- Filtering Data: Using the dataset df_example. You can combine logical expressions to find participants who Age both above 20 and Parity > 3:

- Conditional Statements: Building an "age verification" script? Use OR to check ID or age:

```
5 0
5 1
5 2
5 3
df_example %>%
    filter(Age > 40 | Parity >= 4 ) %>%
    print()
7
5 8
5 9
6 0
6 1
57:1 (Top Level) *
```


Console Terminal \times Background Jobs

R R 4.3.2 • C:/Users/LENOVO/Desktop/TOY DATASETS/
New_HF_ID New_ID Child_ID Order_Child EmergencyCS ANC_HF Age Age_cat Educ_cat Parity Parity_cat

<db 7 >	<db 7 >	<chr>	<db7> <fct>	<db 7 >	<db $7>$	<db 7 >	<db 7 >	<db $7>$	<db $7>$
2	5894	5894-1	1 Yes	NA	39	3	NA	6	3
2	$\underline{5} 897$	5897-1	1 Yes	NA	36	3	NA	4	2
2	5907	5907-1	1 Yes	NA	37	3	NA	4	2
2	5916	5916-1	1 No	NA	34	2	NA	5	3
2	5917	5917-1	1 Yes	NA	40	3	NA	4	2
2	5919	5919-1	1 Yes	NA	33	2	NA	4	2
2	5927	5927-1	1 Yes	NA	30	2	NA	4	2
2	$\underline{5} 933$	5933-1	1 Yes	NA	40	3	3	4	2
2	$\underline{5} 947$	5947-1	1 Yes	NA	39	3	NA	4	2
2	$\underline{5} 957$	5957-1	1 No	NA	34	2	NA	4	2

\square \# i 2,842 more rows
\# i 4 more variables: Some_PrecmD_cat <dbl>, Some_Pregcomp1_cat <dbl>, Refsour_cat <dbl>, BMI <dbl>
Use $\operatorname{brint}(n=\ldots)$ to see more rows

- Negating Results: Want to exclude specific values from a data analysis? NOT comes in handy:

13
16
17
18
19
20
21
22
23
24
25
$2 r$

```
df_example %>%
    select(!Parity) %>%
    filter(Age > 30) %>%
    group_by(EmergencyCS) %>%
    summarise(mean_age = mean(Age))
```


Element-wise AND and OR

- R offers handy operators (\& and |) for element-wise comparisons within vectors.
- For example:

Console Terminal \times Background Jobs

R R 4.3.2 • C:/Users/LENOVO/Desktop/TOY DATASETS/ \Rightarrow
$>x<-c(1,3,5,7)$
$>y<-c(2,4,6,8)$
> \#\#\# apply element base selection
$>z<-x \& y$
> Z
[1] TRUE TRUE TRUE TRUE
$>$
$>w<-x \mid y$
> w
[1] TRUE TRUE TRUE TRUE
$>$

Comparison Operators

- (<, <=, >, $\rangle=,==$, !=):
- These operators are used to compare values and return logical vectors indicating the result of the comparison.

